Some results on a $\chi$-divergence, an~extended~Fisher information and~generalized~Cram\'er-Rao inequalities

نویسنده

  • Jean-Franccois Bercher
چکیده

Abstract. We propose a modified χ-divergence, give some of its properties, and show that this leads to the definition of a generalized Fisher information. We give generalized Cramér-Rao inequalities, involving this Fisher information, an extension of the Fisher information matrix, and arbitrary norms and power of the estimation error. In the case of a location parameter, we obtain new characterizations of the generalized q-Gaussians, for instance as the distribution with a given moment that minimizes the generalized Fisher information. Finally we indicate how the generalized Fisher information can lead to new uncertainty relations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on a χ-divergence, an Extended Fisher Information and Generalized Cramér-Rao Inequalities

We propose a modified χ-divergence, give some of its properties, and show that this leads to the definition of a generalized Fisher information. We give generalized Cramér-Rao inequalities, involving this Fisher information, an extension of the Fisher information matrix, and arbitrary norms and power of the estimation error. In the case of a location parameter, we obtain new characterizations o...

متن کامل

On generalized Cramér-Rao inequalities, generalized Fisher informations and characterizations of generalized q-Gaussian distributions

This paper deals with Cramér-Rao inequalities in the context of nonextensive statistics and in estimation theory. It gives characterizations of generalized q-Gaussian distributions, and introduces generalized versions of Fisher information. The contributions of this paper are (i) the derivation of new extended Cramér-Rao inequalities for the estimation of a parameter, involving general q-moment...

متن کامل

Cramér-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information

The moment-entropy inequality shows that a continuous random variable with given second moment and maximal Shannon entropy must be Gaussian. Stam’s inequality shows that a continuous random variable with given Fisher information and minimal Shannon entropy must also be Gaussian. The CramérRao inequality is a direct consequence of these two inequalities. In this paper the inequalities above are ...

متن کامل

On a (\beta,q)-generalized Fisher information and inequalities involving q-Gaussian distributions

On a (β, q)-generalized Fisher information and inequalities involving q-Gaussian distributions a) In the present paper, we would like to draw attention to a possible generalized Fisher information that fits well in the formalism of nonextensive thermostatistics. This generalized Fisher information is defined for densities on R n. Just as the maximum Rényi or Tsallis entropy subject to an ellipt...

متن کامل

On multidimensional generalized Cramér-Rao inequalities, uncertainty relations and characterizations of generalized q-Gaussian distributions

In the present work, we show how the generalized Cramér-Rao inequality for the estimation of a parameter, presented in a recent paper, can be extended to the mutidimensional case with general norms on Rn, and to a wider context. As a particular case, we obtain a new multidimensional Cramér-Rao inequality which is saturated by generalized q-Gaussian distributions. We also give another related Cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013